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ON CENTRAL 2-SYLOW INTERSECTIONS* 

BY 

ARIEL ISH-SHALOM 

ABSTRACT 

In this paper we classify finite groups, in which a center of a Sylow 2-subgroup is 
contained in no more than six distinct Sylow 2-subgroups. 

1. Introduction 

It is well  known  that  if the  cen t e r  Z,  of a Sylow 2 - subgroup  S, of the  finite 

g roup  G, is con ta ined  in no m o r e  Syiow 2-subgroups  of G, then  be ing  weak ly  

c losed  in S, Z is s t rongly  c losed  in S with respec t  to G by coro l l a ry  5.3 of [1]. 

THFOREM. Let G be a finite group in which the center of S, a Sylow 2-subgroup 

of G, is contained in no more than six distinct Sylow 2-subgroups of G. 

Then one of the following holds: either 

(i) there exists a non-trivial abelian subgroup of S, strongly closed in S with 

respect to G, or 

(ii) G has a subgroup of index 2, or 

(iii) S is isomorphic to a dihedral group of order 8, or to a quasi-dihedral group 

of order 16. 

If the center of S is contained in no more than four distinct Sylow 2-subgroups of 

G, then (i) holds. 

W e  ob ta in  as co ro l l a r i e s  two cha rac t e r i za t i on  t h e o r e m s  for  finite s imple  

groups .  

COROLLARY 1. Let G be a finite non-abelian simple group in which a center of 

a Sylow 2-subgroup of G is contained in no more than six distict Sylow 

2-subgroups of G. 

Then G is isomorphic to one of the following groups : L2(q), U3(q), S~ (q),  q even, 
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L2(q), q --- 3, 5(mod 8), L2(7), L2(9), L3(3), MI,, J,, or a simple group of Ree type of 

characteristic 3. 

COROLLARY 2. Let G be a finite non-abelian simple group in which a center of 

a Sylow 2-subgroup of G is contained in no more than four distinct Sylow 

2-subgroups of G. 

Then G is isomorphic to one of the following groups: L2(q), U~(q), S~(q), q 

even, L2(q ), q ~ 3, 5 (rood 8), J,, or a simple group of Ree type of characteristic 3. 

These results and many aspects of the proof are generalizations of those in [6]. 

2. Notations, definitions and preliminary results 

Most of the notations are standard and might be found in [5]. Other notations 

and definitions are mainly those of [6], with minor modifications. We repeat 

them here for the convenience of the reader. 

Thus, all groups considered are finite, H <= G ( H  < G) means that H is a 

(proper) subgroup of G, SyI~(G) denotes the set of all Sylow p-subgroups of G. 

For X, a subgroup of G, denote by O'(X)  the subgroup of X, generated by the 

elements of odd order. By A -= B we mean that A is defined by B. 

For P, a p-subgroup of G, we define E(P)~-{S E Sylp (G)IP <= S}, or(P)--- 

IE(P)I and/5 = N E(P). We denote by ~" the conjugacy class of centers of Sylow 

2-subgroups of G, and for Z E s r we denote 2 by T(Z) ,  and set ~ ' -  

{ T ( z ) l z  e r 
For any subgroup X, of G, define ~'x ~- {Z E ~'IZ =< X}, and ~'x -= {T @ r l T =< 

X}. Define r ' =  { T E  r[ for every S, S ' E  E(T), S ~  S' implies that S N S ' =  T}. 

Finally, let D,, QD, and E, denote the dihedral, quasi-dihedral and elementary 

abelian groups of order n, respectively. 

Some immediate consequences of these definitions are summarized in the 

following lemmas. 

LEMMA 1, (i) If P,P' are p-subgroups of G such that P =/5 and P < P' then 

Np,(P)/P acts faithfully on E(P). If, moreover, P < X <-_ P' implies f (  = P', then 

Ne,(P)/P acts faithfully and fixed point freely on E(P) \E(P ' ) .  

(ii) Let P be a p-subgroup of G. Then or(P)-= 1 (modp) .  

PROOF. (i) is a restatement of [6] lemma 4, and (ii) is just [6] lemma 6. 

LEMMA 2. (i) The set ~" is a conjugacy class of 2-subgroups of G. 

(ii) If T E r, Z E ( and Z <= T, then T =  T(Z) .  
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(iii) I f  T E r and S E SyI2(G), then S E Syl2(No(T)) iff Z(S)<= T, 

(iv) INo(T)I~=IGI~.  

PROOF. (i) Let T,, T2E~', say, T,=-T(Z(S,)) ,  S, ESyI2(G), i = 1 , 2 .  There 

exists some g E G such that S~ = S:, hence T~ = ( M Y.(Z(S1)))* = n E(z(sI))* = 
n E ( z ( s f ) )  = n E(Z(S2)) = T~. 

(ii) For Z '  E ~, T' =- T ( Z ' )  we have that o-(T') = or(Z'). Thus by (i), Z E ~, 

T E r imply that Or(T)= o-(Z). Hence, if in addition Z =< T, the fact that 

E(T) C Y.(Z) implies that E(T) = E(Z), whence T = n Y.(T) = n E ( z )  = T(Z) .  

(iii) Let T E r  and S E S y l 2 ( G ) .  If Z =- Z ( S )  <- T, then by (ii) T =  T(Z) ,  

hence if g E N t ( Z ) ,  then T s = T ( Z )  * = T ( Z * ) = T ( Z ) = T ,  so that S_C 

No(Z)C_ No(T) ,  whence S E Syl2(No(T)) as required. 

Now, as T E r, we know that there exists some S 'ESy l2 (G)  such that 

T = T(Z(S ' ) ) .  By what we have just proved, S ' E  SyI2(No(T)), so INo(T)I2 = 

I GI: proving (iv). 

Moreover,  assuming S E SyI~(No(T))C_ Syl2(G) we have some g E N o ( T )  

such that S = (S') 8. Thus Z ( S ) = Z ( S 's ) = Z ( S') ~ C_ T s = T, and we are through. 

LEMMA 3. Let T be a 2-subgroup of G satisfying T = T and or(T) <- 6. Then 

one of the following holds: 

(i) For every S, S' E E(T), S # S'  implies S n S'  = T, or 

(ii) Or(T) = 5, and denoting Y.(T) = {S,},5=1, we have (after renumbering the S,' s 

if necessary) that 

(I) {Ns, (T)}=SyI2(NG(T)) ,  INs,(T): T I = 2  for i > 1 ,  

(2) T 1 ~ S I A S 2 N S 3 = S I A S 2 = S ,  A S 3 = S 2 N S 3 > T ,  

T2 =- SI A S4 A Ss = S~ A Ss = S4 A Ss = S1N S, > T, and 

S, N Sj = T for all i =2 ,3 ,  j =4 ,5 ,  

(3) NT,(T)= Ns~(r)= Ns~(r), NT2(T)= N s , ( r ) =  Ns,(T), 

(4) for i = 1 , 2  o-(T,)=3, INs , (T , ) :T , I=2  , N o ( T ) i s  transitive on E(T,), 

Ns,( T~)/T~ interchanges $2 and $3 by conjugation and Ns,( T2)/T2 interchanges $4 

and $5 by conjugation, 

(5) N s ( T ) / T C D , .  

Thus if Or(T) <= 4, only (i) can happen. 

PROOF. By Lemma l(ii), Or(T)= 1,3 or 5. If Or(T)= 1, then (i) holds 

vacuously. If Or(T) = 3, then (i) holds by [6] corollary 7. If or(T) = 5 and (i) does 

not hold, we use the proof of [6] lemma 11, which, except for the last paragraph, 

is valid under our assumptions, to prove (ii) (1)-(3). The last assertions, (4), (5), 

are easy consequences of (1)-(3) and Lemma l(i). 
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Following 

suitable for 

K = { K  < S I Z ( S ) < = K , K =  K}. 

conjugation family. We restate 

[1], we now construct the variant of weak conjugation family, 

our purposes. Let S be a Sylow p-subgroup of G. We define 

Theorem 5.2 of [1] asserts that r is a weak 

it as 

LEMMA 4. Let S be a Sylow p-subgroup of a finite group G. 

Define r = { K <-_ S JZ(S)  <- K, K = K, }. Then, if x, y E S and x is conjugate to y 

in G, there exist K, EK, u, E N o ( K , ) ,  i = l , . . . , n  such that x "' " .=y.  If, 

moreover, for some 1 <-_ i <- n, K, < S, we may assume that u, is a p-element. 

The following argument is an analogue of that of [3]. Let S, S' be Sylow 

p-subgroups of G. We denote S -  S' iff ~rsns,~ 0 ,  and S ~-S'  if there exist 

{S,}7_, _C Sylp(G) such that S = S~, S, = S', and S, - S,.l for every 1 _--- i < n - 1. 

It is clear that the relation ~ is an equivalence relation on Sylp(G). 

LEMMA 5. In the permutation representation of G acting on Sylp(G) by 

conjugation, the ~--equivalence classes form a system of imprimitivity. Denoting 

by H the stabilizer of some --~-equivalence class C we have: 

(i) C =  Sylp(H), 

(ii) If K is a p-subgroup of H such that ~ , ~  f~, then No(K)<= H, 

(iii) If H is a p-local subgroup of G, then for every S E Sylp (H),  Z(Op (H)) is a 

non-trivial abelian subgroup strongly closed in S with respect to G. 

PaOOF. Except for (iii) the proof is a repetition of [3] lemma 2.1. As for (iii), 

we claim that if x, y ~ S, and x is conjugate to y in G, then x is conjugate to y in 

H, whence Z(Op(H)) ,  which is a non-trivial abelian normal subgroup of H, is a 

strongly closed abelian subgroup of S with respect to G. 

Indeed, let K be a p-subgroup in K, the weak conjugation family defined 

above, and let u E N o ( K ) .  As Z(S)<=K, we have that ~rK~O, hence the 

element u, permuting the subgroups of ~'K, must stabilize C, whence u E H. Thus 

by Lemma 4, if x, y E H and x is conjugate to y in G, x is conjugate to y in H, 

and we are through. 

Let xl, be a characteristic subgroup of yo, and let ~,r/, denote their G-  

conjugacy classes respectively. For every y E r/, we can define x (y) to be the 

unique subgroup of ~:, satisfying x (y)  = x,~ for some g such that y = yL Indeed, if 

for some g ' E  G, y = yg', then g ' g - l E  No(y,,)C No(xo), and xo s '= xo s. Moreover,  

x : r  I ---->~ is the unique function from r/ to ~: such that x(yo) = x., and x(y~) = 

(x(y))" for every g E G. 

This discussion motivates the following definition. Let x,, Y0 be subgroups of 

the group G, and let ~, 77 denote their G-conjugacy classes respectively. We say 
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that x,, is kind of characteristic in y,, with respect to G, if N~(y,,) C_ Nc (x,,). If such 

is the case, then, as discussed above, we can define a unique function x:r/---~: 

such that x(y, ,)= x,,, and x(y ") = (x(y))" for every y E "O, g E G. 

LEMMA 6. Le tSbeaSy low  2-subgroupofXandH, thestabil izerinGofC, its 

~--equivalence class. 

If X,, is kind of characteristic in S with respect to G such that for every 

S ' ~  E(Z(S)) ,  X(S ' )  = Xo, then X,, is normal in H. 

PROOF. It suffices to prove that if S,, $2 C C satisfy S ~ -  $2, then X(S~)= 

X(S2), for then, if S ' ~  SylffH) = C, we have that S ~ S' so that X(S ' )  = Xo, 

whence /4, permuting Syl2(H), must normalize X0. 

Hence let S~, $2 ~ C = SyI2(H) satisfy Z(SO C S, A S,. for some S~ E SyldG).  

As S3~SyI2(H),  there exists some g E H  such that S~=SL whence S~ ~, 

S~ ' ~ E ( Z ( S ) ) ,  so that X(S,~-') = Xo = X(S~-'). Hence X ( S , ) =  X(S~-~) ~ = 

X(Sg ')~ = X(S2), and we are through. 

LEMMA 7. If r = r', then S, a Sylow 2-subgroup of G, contains a non-trivial 

abelian subgroup, strongly closed in S with respect to G. . 

PROOF. Let C denote the ~ -equivalence class of S, and H the stabilizer of C 

in G. Clearly T =- T (Z (S ) )  is kind of characteristic in S. We claim that 

T(Z(S ' ) )  = T (Z (S ) )  for every S' ~ Z(S). Indeed, let S' E E(Z(S)) ,  and assume, 

by way of contradiction, that Z(S')ff_ T. Thus T<(T,Z(S ' ) )<= Ns.(T)<= S" for 

some S " ~  SyI2(No(T)) C SylffG). Hence S', S" ~ E(T)  and T < S' f) S"  imply, 

as z = ~", that S ' =  S"~Sy l f fN~(T) ) ,  whence by Lemma 2 ( i i i )we must have 

Z(S ' )  C_ T. Therefore  our claim is proved, and we may turn to Lemma 6. and 

then to Lemma 5(iii) to arrive at the desired conclusion. 

REMARK 8. The corollaries are easy consequences of the theorem once we 

quote the main theorem of [4]. Then, all we have to do is to prove that if S, a 

Sylow 2-subgroup of G, is isomorphic to a dihedral group of order  8 or to a 

quasi-dihedral group of order 16, then G, a finite simple group satisfying the 

assumption of the theorem, must be isomorphic to either one of L.,(7), L~(3) or 

m l l  �9 

This can be done either directly, or, remembering that [Z(S)I = 2, and that G 

must have just one conjugacy class of involutions (by (7.7.3) of [5], and (7) ex. 7 

of [5]), we can quote theorem 3 of [6]. 
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3. Proof of the theorem 

Let G be a finite group satisfying the hypothesis of the theorem. We prove 

that G satisfies the conclusion of the theorem in a series of lemmas. Let S be a 

Sylow 2-subgroup of G, Z =- Z ( S )  and T =- T(Z) .  Let H be the stabilizer in G 

of C, the -~-equivalence class of S. In the following lemma we gather several 

properties needed for the proof of the theorem, which G may be assumed to 
have. 

LEMMA 9. We may assume that: 

(i) 02(H) = 1, 

(ii) r ~  r',  

(iii) o . (T)  = 5, E ( T )  = {S,};=,, {S,} = Sy l2(No(T)) ,  

(iv) T, ~-- S1 n $2 n $3 = S1 n $2 ~-- s1 n s 3 ~-- S2 n s 3 > T, 
T2 =- $1 n S4N S~ = $1 n $4 = s,  n $5 = & n  $5> T, 
S, N Sj = T for all i =2,3 ,  j =4 ,5 ,  

(V) TI = Ns~(T)= Ns,(T), T2 = Ns,(T)= Ns,(T), IT,: T I = 2 for i = 1,2, 
Ns,( T)/ T C D8 

(vi) for i = 1 , 2 ,  o'(7;,)=3, INs,(T,):T,I=2 , No(T)  is transitive on E(T,), 

Ns,(T1) interchanges $2 and $3, Ns,(T2) interchanges S, and $5, 

(vii) & = S, N o ( S ) =  N o ( Z ) =  No(T) ,  
(viii) Z, =-Z(S,) centralizes T for every 1 <-- i <= 5, 

(ix) t's = { z , } L , ,  b = { z } ,  ~,={z,,z~,z,},  ~,= { z . z . , z , } ,  
(x) R, -= Zl n Z~ n Z3 = Zi  n z 2  = z 1  n z 3  = z 2  n z3, 

R2~  Z1 n z 4 n  zs  = z l  n z 4 =  z l  n z s =  z 4 n  z~, 

U, =- T ( Z , ) N  T (Z2)n  T(Z3)= T ( Z , ) o  T(Z2)= T ( Z , ) n  T(Z, )  

= T(Z2)n  r (z3) ,  

Us ==- T(Z, )  n T(Z,) 'A T(Zs) = r ( Z l )  O T ( Z  0 = T(Z,)  n (Zs) 
= T ( Z 4 ) n  T(Zs), 

(xi) for i = 1, 2 U, is a normal subgroup of index 4 in T,. 

PROOF. (i) clear by Lemma 5(iii), and (ii) by Lemma 7. 

(iii)-(vi) clear by (ii), Lemma 3 and Lemma 2 (iv). 

(vii) clearly Na(S)  C_ No(Z )  C_ No(T) .  By (iii), S~ = S, and moreover No(T)  C_ 
No(S), whence we are through. 

(viii) clear by (iii). 

(ix) clear by (iii), (v) and Lemma 2 (iii). 
(x) clear by (ix) and (vi). 

(xi) clear by (v), (vi) and (x). 
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LEMMA 10. (i) The subgroup X =- O' (N~(Z))  is kind of characteristic in S 

with respect to G, 

(ii) for every S'~Y~(Z), O'(No(Z(S ' ) )  = X, 

(iii) N ~ ( S ) - - S •  

(iv) i fx,  y E Z ,  then x is conjugate toy  in G only if x = y. 

PROOF. (ii) Let x be an element of Na(Z)  = No(S)  of odd order. As x 

normalizes S, x acts on {Th T2}, and being of odd order, it acts trivially, 

normalizing both T1 and T2. Now, x acts on {Z,},5=2, and so, normalizing T1 and 

T2, x acts on {Z2, Z3}, and on {Z4, Zs}. Thus being of odd order, x normalizes Z, 

for all 1_-<i_-<5. Hence for every S ' ~ E ( Z ) ,  X C_ O'(N~(Z(S'))) ,  so clearly 

O'(~Io,(Z(S'))) = X as required. 

As (i) is obvious, we know by Lemma 6 that X is normal in H, whence by 

Lemma 9(i), X N S = Oz(X)= 1. Thus 'No(S) = N o ( Z ) =  S • X, and (iii) is 

proved. 

Now, (iv) is immediate by (iii) and lemma 4.5 of [2]. 

LEMMA 11. (i) If X, y E T, and x is conjugate to y in G, then x is conjugate to y 

in S, 

(ii) for 1~<i~<5, Z, A T =  Z, A Z, 

(iii) Z A U ~ O U 2 = R ~ A R 2 =  n~'s. 

PROOF. (i) It is clear that (~'s) is weakly closed in S with respect to G. Hence, 

as T C_ Cs((r by Lemma 9 (viii), (i) is immediate by lemma 4.5 of [2] and 

Lemma 10 (iii). 

(ii) Let x E Z, n T. As ,2., is conjugate to Z~ in G, there exists some y E Z, 

conjugate to x in G. Hence, by (i), x is conjugate to y in S, whence x ~ Z, n Z~. 

Thus (ii) is proved. 

(iii) By (ii) and Lemma 9 (vi) Z O T ( Z , ) = Z O Z ,  for 1=<i=<5, whence 

Z A U I A U 2 = R I A R z  = n~s. 

LEMMA 12. The conclusion of the theorem holds. 

PROOF. The subgroup n ~'s is centralized by NG(S)= NG(T), and by every 

2-element of NG(T,), i = 1,2. Hence by Lemma 4, n ~'s is strongly closed in S 

with respect to G. Thus being abelian, we may assume that n ~'s = 1. 

Now, U1 n U2 is normal in S, so Z n Ul n u2 = n ~s = 1 forces U~ n U2 = 1. 

As we have for i = 1, 2 [ T : U, [ =< 2, there are two possibilities only: 

(i) U ,=  U 2 = l .  
Then, T = Z - E2, and setting Z, = (z,) for 1 =< i =<5, we have that Cs(z~)= 
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(z,, z2) = E4 whence S is dihedral or quasi-dihedral by lemma 4 of [7]. As 

S / T ~ D 8  and T =  E2, we must have S = Ds, ODi6, or D,6. 

Now as ]Z(S)I = 2, every involution in S, conjugate to z,, must be in {z,},5.~ as 

~s = {Z,},5~,. Thus if S --= D16, S has more than one conjugacy class of involutions. 

As zl, the central involution of S, is conjugate to one of {z,},5.2, S has exactly two 

conjugate classes of involutions, and we are through by (7.7.3) (ii) of [5]. 

(ii) U,~ 1 for some i = 1,2, say, U~fi 1. 

Irr this case, as ] T :/-.121 =< 2 for i = 1,2, U, C E2 forces T = U~ x U2 C E4. 

Assume first that T, is normal in S. In that case T2 is also normal in S, and 

S / T ~ - E ,  by Lemma 9(v), (vi), say, S / T  = {T, T1/T, T2/T, T3/T}. Also, for 

i = 1,2, U, is normal in S, so, as U~# 1, R: = U ~ A Z #  1. Hence T =  Z---E4,  

7"1 = T2 ~- Es and RI = R2 = E2. 

If there exists an involution in T3 - T, then T3 - Es, so as S L.J,3~, T,, S consists 

of the identity and involutions only. Thus S = E~6, in contradiction to the fact 

that Z = E4. Thus every involution of S lies in I,.J:=~ T, = I,.J,~ Z,. 

Let us analyse the involution fusion pattern in S, and first let us fix some 

notation. Let {1, t, z, zt} =-- Z,  i t )  =- R , ,  and (z t )  - Rz. Denote  by C,, C2, C3 the 

intersection of S with the G-conjugacy classes of t, z and zt, respectively. 

Clearly, every involution of S lies in I..J~=~ (7,. Moreover,  by Lemma 10(iv), 

IC, O Z j ] =  1 for every i = i = < 3 ,  l - j = < 5 .  Now denote { u } = - C 2 N Z 2 ,  {v}---- 

C ~ A Z ,  to get: Z = { 1 , t , z ,  zt}, Z 2 = { 1 , t , u ,  ut}, Z 3 = { 1 ,  t, uz, uzt}, Z , =  

{1, v, vzt, zt}, Z~ = {I, vz, vt, zt}, where every non-identity element is an involu- 

tion, and these are all the involutions of S. 

Clearly, ut E C3 and vzt  E C2. If vt E C,, then clearly C~ = {t, v, vt}, whence 

{1, t, v, vt} is an abelian subgroup, strongly closed in S with respect to G. Hence 

we may assume that vt E C2, whence vz E C,. Analogously, if uz ~ C3, then 

C3 --- {zt, ut, uz},  whence {1, zt, ut, uz}  is an abelian subgroup, strongly closed in S 

with respect to G, and we may assume uz ~ C2, so uzt  E C3. Thus C1 = {t, v, vz},  

(72 = {z, u, uz, vzt, vt}, and C3 = {zt, ut, uzt}. 

Concluding, as v interchanges Z2 and Z3 by conjugation, u E C~ n z2 

implies u ~ E C~ n Z3 = {uz}.  Thus (uv)  ~ = z, whence (u, v) = 

{1, u, v, uv, z, uz, vz, uvz}  = D,.  As IS : (u, v)I = 2, and (u, v) fq C3 = O, lemma 

5.38 of [8] tells us that G has a subgroup of index 2. 

To  conclude, assume that T, is conjugate to T2 in S. In that case U~ ---- U2 - Z2, 

T --- E,,  Z = E2. Now, T~ C Cs(T) ,  and as T > Z, C -= Cs(T) = T~T~ is of index 2 

in S. Hence every v E S \ Z ,  acts the same on T, that is: v centralizes Z, and if 

t ~ T \ Z ,  then (tt~) ~ = tt"(as v 2 G C) iml.,lies ( v ~  C) that tt ~ = z, so that t ~ = tz. 

We claim that there exists some involution v ~ S \C.  Let v T  be an involution 



Vol. 27, 1977 CENTRAL 2-SYLOW INTERSECTIONS 347 

of S / T  not in C / T .  A s  S / T  ~- D8 we must  have  v ~  C, but v 2 U T. A s s u m i n g  that 

v is not an involut ion,  w e  have  that v 2 E T central ized by v must  equal  z. H e n c e  

taking v'  - v t  for some t E T \ Z  we have that v'  E S \ C ,  and that ( v t )  2 = v t v t  = 

v t v - l v 2 t  = t ~  = t z z t  = 1, so that v '  is the required element,  in which case we 

rename it v. 

We claim that v cannot be conjugate in G to any involution in C. Indeed,  

according to L e m m a  4 this can be achieved in a finite series of steps, each of 

which is a conjugation in the normalizer of some K E K. Now K = {T, T,, T2, S}, 

and S is the only subgroup in K to which v belongs. But every g E Ns (T)  

normalizes C ~ Cs(T) ;  so v cannot be conjugate in G to any involution in C. 

By lemma 5.38 of [8], G has a subgroup of index two, and the theorem is 

proved. 
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